scipy.stats.skellam¶
- scipy.stats.skellam = <scipy.stats._discrete_distns.skellam_gen object at 0x2aba95116310>[source]¶
- A Skellam discrete random variable. - As an instance of the rv_discrete class, skellam object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution. - Notes - Probability distribution of the difference of two correlated or uncorrelated Poisson random variables. - Let k1 and k2 be two Poisson-distributed r.v. with expected values lam1 and lam2. Then, k1 - k2 follows a Skellam distribution with parameters mu1 = lam1 - rho*sqrt(lam1*lam2) and mu2 = lam2 - rho*sqrt(lam1*lam2), where rho is the correlation coefficient between k1 and k2. If the two Poisson-distributed r.v. are independent then rho = 0. - Parameters mu1 and mu2 must be strictly positive. - For details see: http://en.wikipedia.org/wiki/Skellam_distribution - skellam takes mu1 and mu2 as shape parameters. - The probability mass function above is defined in the “standardized” form. To shift distribution use the loc parameter. Specifically, skellam.pmf(k, mu1, mu2, loc) is identically equivalent to skellam.pmf(k - loc, mu1, mu2). - Examples - >>> from scipy.stats import skellam >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots(1, 1) - Calculate a few first moments: - >>> mu1, mu2 = 15, 8 >>> mean, var, skew, kurt = skellam.stats(mu1, mu2, moments='mvsk') - Display the probability mass function (pmf): - >>> x = np.arange(skellam.ppf(0.01, mu1, mu2), ... skellam.ppf(0.99, mu1, mu2)) >>> ax.plot(x, skellam.pmf(x, mu1, mu2), 'bo', ms=8, label='skellam pmf') >>> ax.vlines(x, 0, skellam.pmf(x, mu1, mu2), colors='b', lw=5, alpha=0.5) - Alternatively, the distribution object can be called (as a function) to fix the shape and location. This returns a “frozen” RV object holding the given parameters fixed. - Freeze the distribution and display the frozen pmf: - >>> rv = skellam(mu1, mu2) >>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1, ... label='frozen pmf') >>> ax.legend(loc='best', frameon=False) >>> plt.show()   - Check accuracy of cdf and ppf: - >>> prob = skellam.cdf(x, mu1, mu2) >>> np.allclose(x, skellam.ppf(prob, mu1, mu2)) True - Generate random numbers: - >>> r = skellam.rvs(mu1, mu2, size=1000) - Methods - rvs(mu1, mu2, loc=0, size=1, random_state=None) - Random variates. - pmf(x, mu1, mu2, loc=0) - Probability mass function. - logpmf(x, mu1, mu2, loc=0) - Log of the probability mass function. - cdf(x, mu1, mu2, loc=0) - Cumulative distribution function. - logcdf(x, mu1, mu2, loc=0) - Log of the cumulative distribution function. - sf(x, mu1, mu2, loc=0) - Survival function (also defined as 1 - cdf, but sf is sometimes more accurate). - logsf(x, mu1, mu2, loc=0) - Log of the survival function. - ppf(q, mu1, mu2, loc=0) - Percent point function (inverse of cdf — percentiles). - isf(q, mu1, mu2, loc=0) - Inverse survival function (inverse of sf). - stats(mu1, mu2, loc=0, moments='mv') - Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’). - entropy(mu1, mu2, loc=0) - (Differential) entropy of the RV. - expect(func, args=(mu1, mu2), loc=0, lb=None, ub=None, conditional=False) - Expected value of a function (of one argument) with respect to the distribution. - median(mu1, mu2, loc=0) - Median of the distribution. - mean(mu1, mu2, loc=0) - Mean of the distribution. - var(mu1, mu2, loc=0) - Variance of the distribution. - std(mu1, mu2, loc=0) - Standard deviation of the distribution. - interval(alpha, mu1, mu2, loc=0) - Endpoints of the range that contains alpha percent of the distribution 
