from scipy.stats import skellam import matplotlib.pyplot as plt fig, ax = plt.subplots(1, 1) # Calculate a few first moments: mu1, mu2 = 15, 8 mean, var, skew, kurt = skellam.stats(mu1, mu2, moments='mvsk') # Display the probability mass function (``pmf``): x = np.arange(skellam.ppf(0.01, mu1, mu2), skellam.ppf(0.99, mu1, mu2)) ax.plot(x, skellam.pmf(x, mu1, mu2), 'bo', ms=8, label='skellam pmf') ax.vlines(x, 0, skellam.pmf(x, mu1, mu2), colors='b', lw=5, alpha=0.5) # Alternatively, the distribution object can be called (as a function) # to fix the shape and location. This returns a "frozen" RV object holding # the given parameters fixed. # Freeze the distribution and display the frozen ``pmf``: rv = skellam(mu1, mu2) ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1, label='frozen pmf') ax.legend(loc='best', frameon=False) plt.show() # Check accuracy of ``cdf`` and ``ppf``: prob = skellam.cdf(x, mu1, mu2) np.allclose(x, skellam.ppf(prob, mu1, mu2)) # True # Generate random numbers: r = skellam.rvs(mu1, mu2, size=1000)