M3E

EDO

Sorbonne Université

Master 1 SPE M3E

Méthodes mathématiques et modélisation de l'environnement (M3E)

Résolution numérique des équations différentielles ordinaires (EDO)

2020-2021

Jacques.Lefrere@upmc.fr

EDO		TABLE DES MATIÈRES	TABLE	DES MATIÈRES
	1.3	Plus généralement		22
2	Rap	pels sur les EDO		23
	2.1	Définition, terminologie		23
	2.2	Classification des EDO et résolution analytique		24
		2.2.1 EDO à variables séparables du 1er ordre		24
		2.2.2 EDO linéaires du 1 ^{er} ordre		25
		2.2.3 EDO linéaires du 2º ordre à coefficients constants		28
3	Rés	olution numérique des EDO		30
	3.1	Problème différentiel		30
	3.2	Deux types de problèmes différentiels à résoudre		31
	3.3	Équations différentielles scalaires du 1er ordre		32
	3.4	Unicité et problème bien posé : conditions suffisantes		33

2

Table des matières

1	Déri	ivation				
	1.1	Rappe	els : définition et propriétés		6	
	1.2	Dériva	tion numérique : erreurs de troncature et d'arrondi		7	
		1.2.1	Erreur d'estimation associée		9	
		1.2.2	Estimation de l'erreur de troncature		10	
		1.2.3	Rappel : domaine et précision des réels en virgule flottante		12	
		1.2.4 Caractéristiques numériques des flottants sur 32 et 64 bits				
		1.2.5	Estimation de l'erreur d'arrondi		17	
		1.2.6	Comparaison des errreurs		18	
		1.2.7	Influence de la précision		19	
		1.2.8	Influence du nombre de termes		20	
			1		2020-2021	
			TABLE DES MATIÈRES	ABLE	DES MATIÈRES	
	3.5	Métho	des de résolution numérique et notations		34	
4	Mét	hodes	à un pas		36	
	4.1	Métho	des du premier ordre		37	
		4.1.1	Méthode d'Euler progressive (explicite)		37	
		4.1.2	Méthode d'Euler rétrograde (implicite)		39	
	4.2	Métho	des du deuxième ordre		42	
		4.2.1	Méthode du point milieu		42	
		4.2.2	Méthode d'Euler modifiée		44	
	4.3	Métho	des de Runge Kutta		48	
		4.3.1	Méthode de Runge Kutta d'ordre 3		48	
		4.3.2	Méthode de Runge Kutta d'ordre 4		49	
	4.4	Erreur	absolue en fonction du pas et de l'ordre		50	

7

	4.5	4.5 Exemple de l'équation logistique					
		4.5.1	Erreurs en fonction du temps	53			
		4.5.2	Erreur totale maximale en simple précision en fonction du pas .	58			
		4.5.3	Erreur totale maximale en double précision en fonction du pas .	59			
		4.5.4	Comparaison des erreurs maximales simple/double précision .	60			
		4.5.5	Méthodes de prédicteur correcteur	61			
5	Les	EDO d	u premier ordre en pratique	62			
	5.1	Struct	ure des codes	62			
	5.2	Échell	es de temps et problèmes raides	63			
	5.3	Validat	tion des résultats	64			
	5.4	Cas d'	un second membre défini par intervalles	65			
6	Sys	tèmes (d'EDO du 1er ordre	66			
			4		2020-2021		

1 Dérivation

EDO

M3E

Dérivation

1.1 Rappels : définition et propriétés

Définition

1

$$f'(t) = \frac{df}{dt}(t) = \lim_{h \to 0} \frac{f(t+h) - f(t)}{h}$$
(1)

Quelques dérivées usuelles (a = constante)

f(t)	t^a	$\ln t+a $	$\exp(at)$	$\sin(at)$	$\cos(at)$
f'(t)	at^{a-1}	1/(t+a)	$a \exp(at)$	$a\cos(at)$	$-a\sin(at)$

Linéarité :
$$(f+g)' = f' + g'$$
 $(af(t))' = af'(t)$

Dérivation et composition de fonctions

$$h(t) = f[g(t)] \quad \Longrightarrow \quad h'(t) = g'(t) \times f'[g(t)]$$

6.1	Méthodes scalaires explicites	66
6.2	Application des méthodes implicites aux vecteurs	68
6.3	Outils disponibles sous python	69
6.4	Implémentation vectorielle	71
6.5	Équations de Lotka-Volterra	72
Équ	ations différentielles d'ordre supérieur	76
7.1	Exemple d'EDO linéaire d'ordre 2 avec forçage	77
7.2	Exemple d'EDO d'ordre 2 : le pendule	78

7.3	Stabilité à long terme avec Euler progressive et rétrograde				85

M3E	5	2020-2021
EDO	1 Dérivation	1.2 Dérivation numérique : erreurs de troncature et d'arrondi

1.2 Dérivation numérique : erreurs de troncature et d'arrondi

Objectif : estimer numériquement **la dérivée première** f'(t) d'une fonction f en t à partir des échantillons de la fonction f aux instants t + ih, où h est le pas d'échantillonnage de f.

Plusieurs approximations de f'(t) ou schémas aux différences finies envisageables. Les plus simples sont les schémas à deux termes :

$$\begin{aligned} f_b'(t) &= \frac{f(t) - f(t-h)}{h} & \text{schéma arrière} \quad backward \\ f_f'(t) &= \frac{f(t+h) - f(t)}{h} & \text{schéma avant} \quad forward \\ f_c'(t) &= \frac{f(t+h) - f(t-h)}{2h} & \text{schéma centré} \quad centered \end{aligned}$$

Préférer le schéma aux différences finies centré

M3E

EDO

Schémas de dérivation aux différences finies à 2 termes

1.2.1 Erreur d'estimation associée

L'erreur d'estimation, $f'_c(t) - f'(t)$ pour le schéma centré, comporte deux contributions qui (au pire) s'ajoutent en valeur absolue :

- l'erreur systématique de troncature déterministe de valeur absolue e_t liée au nombre fini de termes dans l'estimateur (2 termes dans ce schéma). Dérivation théorique \iff multiplication par $i\omega$ dans l'espace de Fourier Dérivation numérique centrée à 2 termes $\implies \times i \sin(\omega h)/h$ qui n'est proche de $i\omega$ que pour $h \to 0$. e_t croît quand h croît
- l'erreur aléatoire d'arrondi de valeur absolue e_a liée à la précision de la représentation approximative des flottants en machine et essentiellement due au calcul de la différence faible de deux termes proches. e_a croît quand h décroît

8 2020-2021 M3E 9 2020-2021 1 Dérivation 1.2 Dérivation numérique : erreurs de troncature et d'arrondi EDO 1 Dérivation 1.2 Dérivation numérique : erreurs de troncature et d'arrondi

FIGURE 1: Erreur totale e de l'estimateur centré à 2 termes de la dérivée première de la fonction sinus en $t = \pi/4$ en fonction du pas h en échelle log-log.

1.2.2 Estimation de l'erreur de troncature

Développement en série de Taylor avec reste de $f(t \pm h)$ au deuxième ordre autour de t:

$$f(t+h) = f(t) + h\frac{df}{dt}(t) + \frac{h^2}{2}\frac{d^2f}{dt^2}(t) + \frac{h^3}{6}\frac{d^3f}{dt^3}(t+\theta h)$$
$$f(t-h) = f(t) - h\frac{df}{dt}(t) + \frac{h^2}{2}\frac{d^2f}{dt^2}(t) - \frac{h^3}{6}\frac{d^3f}{dt^3}(t-\theta' h)$$

où θ et θ' sont dans l'intervalle [0, 1].

Estimateur centré à 2 termes de la dérivée :

$$\frac{f(t+h) - f(t-h)}{2h} = f'(t) + \frac{h^2}{12} \left[f'''(t+\theta h) + f'''(t-\theta' h) \right]$$

Erreur absolue de troncature liée à la dérivée troisième :

$$e_t \approx \frac{h^2}{6} |f^{\prime\prime\prime}(t)|$$

1.2.4 Caractéristiques numériques des flottants sur 32 et 64 bits

Interrogation via numpy.finfo(type).attribut Le type par défaut des réels est float, ou encore numpy.float64.

voir	norme IEEE 754-2008	type			
attribut signification		numpy.float32	numpy.float64		
bits	nombre de bits	32 bits	64 bits		
nmant	nb de bits de la mantisse	23 bits	52 bits		
nexp	nb de bits de l'exposant	8 bits	11 bits		
max	valeur maximale	$3,4 \times 10^{38}$	$1,8 \times 10^{308}$		
tiny	minimum positif	$1,18 \times 10^{-38}$	$2,2 \times 10^{-308}$		
eps	précision relative	$2^{-23} \approx 1.2 \times 10^{-7}$	$2^{-52} \approx 2,2 \times 10^{-16}$		

M3E

16

1 Dérivation

Majorant de l'erreur absolue totale e

 $e \leqslant \frac{\varepsilon |f(t)|}{h} + \frac{h^2}{6} |f'''(t)| = e_m$

18

1.2.6 Comparaison des erreurs pour schéma centré à 2 termes

Erreur d'arrondi

 $e_a \propto h^{-1}$

Pente en log-log -1

Dominante pour h faible

2020-2021

EDO

M3E

Erreur de troncature

 $e_t \propto h^2$

Pente en log-log +2

Dominante pour h grand

1.2 Dérivation numérique : erreurs de troncature et d'arrondi

EDO

M3E

EDO

1.2.5

1 Dérivation 1.2 Dérivation numérique : erreurs de troncature et d'arrondi

Estimation de l'erreur d'arrondi

Chacun des termes de la différence est représenté avec une précision relative ε

 $\varepsilon = 2^{-52} \approx 2.2 \, 10^{-16}$ cas des flottants par défaut sous python

 $|\delta_{\alpha} f(t+h)| \approx |\delta_{\alpha} f(t-h)| \leq \varepsilon |f(t)|$

 $\left|\delta_{a}f_{c}'(t)\right| = \frac{\left|\delta_{a}\left[f(t+h) - f(t-h)\right]\right|}{2h} \leqslant e_{a} = \frac{2\varepsilon|f(t)|}{2h}$

17

 $\varepsilon = 2^{-23} \approx 1.2 \, 10^{-7}$ donné par numpy.finfo(numpy.float32).eps

imposée par le nombre de bits de la mantisse du type de flottant.
Simple précision : flottants sur 32 bits dont 23 de mantisse

- Double précision : flottants sur 64 bits dont 52 de mantisse

numpy.finfo(numpy.float64).eps

Erreur absolue d'arrondi sur $f_c'(t)$ majorée par e_a :

Erreur absolue d'arrondi sur $f(t \pm h)$:

 ε donné par **numpy**. **finfo**(**float**). **eps** c'est-à-dire

FIGURE 2: Erreur totale (valeur absolue) |e| en simple et double précision de l'estimateur à 2 termes de la dérivée première en fonction du pas h en échelle log-log.

Pas optimal $\tilde{h} = \sqrt[3]{3\varepsilon} \left| \frac{f(t)}{f'''(t)} \right| \Rightarrow e(\tilde{h}) = |f(t)| \sqrt[3]{\frac{9\varepsilon^2}{8}} \left| \frac{f'''(t)}{f(t)} \right|$

 \Rightarrow **compromis** nécessaire pour minimiser la somme des erreurs

Les deux erreurs varient en sens inverse selon le pas h

M3E

2020-2021

M3E

EDO

1.2.8 Influence du nombre de termes sur l'erreur de troncature

Objectif : éliminer les termes en h^3 dans le développement de Taylor de f en compensant $h^3 f^{(3)}(t)$ issu des points à $\pm h$ par $(2h)^3 f^{(3)}(t) = 8h^3 f^{(3)}(t)$ issu des points à $\pm 2h$ avec une pondération relative de -1/8.

Schéma aux différences finies centré à **quatre termes** pour estimer la dérivée première d'une fonction f:

 $f'(t) \approx f_{c_4}(t) = \frac{-f(t+2h) + 8f(t+h) - 8f(t-h) + f(t-2h)}{12h}$

Les termes en puissances paires de h se compensent par symétrie Erreur de troncature issue du terme en $h^5f^{(5)}$ dans le développement de f donc :

 $e_t \propto h^4$

1.3 Plus généralement...

Schémas d'ordre supérieur Passer d'un schéma à 2 termes à un schéma à 4 termes améliore nettement l'erreur de troncature, qui varie en h^4 au lieu de h^2 . L'erreur d'arrondi augmente mais très peu.

À précision des réels donnée, l'optimum est obtenu pour un pas plus grand et l'erreur totale est plus faible. Le schéma à 4 termes est donc préférable.

Dérivées d'ordre \boldsymbol{n}

$$y^{(n)} = \frac{\mathrm{d}^n y}{\mathrm{d}t^n} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\mathrm{d}^{n-1} y}{\mathrm{d}t^{n-1}} \right) = \frac{\mathrm{d}y^{(n-1)}}{\mathrm{d}t}$$

Les schémas aux différences finies pour la dérivée d'ordre \boldsymbol{n}

- présentent une erreur d'arrondi en h^{-n}
- mais leur erreur de troncature dépend du nombre de termes utilisés, par ex. en h² pour une dérivée seconde avec un schéma centré à 3 termes.

FIGURE 3: Erreur totale e des estimateurs à deux termes (rouge) et à quatre termes (bleu) de la dérivée première pour les précisions 32 et 64 bits en fonction du pas h.

2020-2021	M3E	21	2020-2021
1.3 Plus généralement	EDO	2 Rappels sur les EDO	

2 Rappels sur les EDO

2.1 Définition, terminologie

EDO = Équations Différentielles Ordinaires : équations faisant intervenir des dérivées successives de la fonction recherchée et des fonctions de la variable indépendante (ici t).

NB. : EDP = Équations aux Dérivées Partielles avec plusieurs variables indépendantes (ex : x, y pour les coordonnées dans un plan et t pour le temps).

Dans le cas explicite, une EDO d'ordre \boldsymbol{n} se met sous la forme :

$$\frac{\mathrm{d}^{\mathbf{n}} y}{\mathrm{d}t^{\mathbf{n}}} = f\left(t, \ y, \ \frac{\mathrm{d}y}{\mathrm{d}t}, \ \dots, \ \frac{\mathrm{d}^{n-1}y}{\mathrm{d}t^{n-1}}\right)$$

où f, connue, est appelée le second membre.

Une EDO d'ordre n possède une famille de solutions y(t) à n paramètres.

2.2 Classification des EDO et résolution analytique

EDO d'ordre 1 :

 $\frac{\mathrm{d}y}{\mathrm{d}t} = f\left(t, \ y\right)$

Les solutions ne dépendent que d'un paramètre, souvent la condition initiale $y(t_0)$. **Résoudre une EDO** = trouver les fonctions y de la variable indépendante t qui vérifient l'EDO.

2.2 Classification des EDO et résolution analytique

2.2.1 EDO à variables séparables du 1^{er} ordre

Les EDO du 1^{er} ordre séparables peuvent se mettre sous la forme

$$a(y)y' = b(t)$$
 soit $a(y) dy = b(t) dt$ (2)

Si on connait des primitives A(y) et B(t) de a(y) et b(t), les solutions vérifient

$$A(y) = B(t) + k$$
 où k est une constante

M3E	24	2020-2021

2 Rappels sur les EDO

est séparable, donc facilement soluble si on connait une primitive de a.

De la linéarité, on déduit une propriété essentielle pour la résolution : La solution générale de l'EDO «avec second membre» est la somme de la solution

générale de l'EDO sans second membre et d'une solution particulière de l'EDO avec second membre. En pratique, la difficulté sera souvent de trouver **une** solution particulière de l'EDO avec second membre.

Recherche par «variation de la constante» :

L'EDO homogène s'écrit y'/y = a(t). Elle s'intègre en $y = C^{ste}e^{A(t)}$ où A est une primitive de a donc A'(t) = a(t).

Rechercher une solution de l'EDO avec second membre sous la forme

$$y(t) = \lambda(t)e^{A(t)}$$
$$y'(t) = \lambda'(t)e^{A(t)} + \lambda(t)a(t)e^{A(t)}$$

.

Exemple Croissance ou extinction de population, désintégration radioactive...

$$\frac{\mathrm{d}y}{y} = \pm \frac{\mathrm{d}t}{\tau}$$

qui s'intègre en $\ln |y| = \pm t/\tau + k$ soit $|y| = k' \exp(\pm t/\tau)$ La constante k' est fixée par la condition initiale $y(t_0)$, donc

$$y(t) = y(t_0) \exp(\pm (t - t_0)/\tau)$$

2.2.2 EDO linéaires du 1^{er} ordre

Une **EDO linéaire du 1er ordre** peut se mettre sous la forme

y'(t) - a(t)y(t) = b(t)

L'EDO homogène associée, dite «sans second membre» b,

$$y'(t) = a(t)y(t)$$

25

M3E

2020-2021

EDO

2 Rappels sur les EDO

2.2 Classification des EDO et résolution analytique

L'EDO prend la forme

$$y' - ay = b(t) = \lambda'(t)e^{A(t)} \quad \text{soit} \quad \lambda'(t) = b(t)e^{-A(t)}$$

D'où $\lambda(t) = \int_{t_0}^t b(u)e^{-A(u)} \, \mathrm{d}u$

La solution particulière s'écrit donc

$$y(t) = e^{A(t)} \int_{t_0}^t b(u) e^{-A(u)} \, \mathrm{d}u$$

Et la solution générale de l'EDO

$$y(t) = e^{A(t)} \left[\mathsf{C}^{\mathsf{ste}} + \int_{t_0}^t b(u) e^{-A(u)} \, \mathrm{d}u \right]$$

Reste à trouver une primitive de $b(u)e^{-A(u)}...$

EDO

M3E

EDO

Autre méthode sur un exemple

Décroissance d'une population avec apports externes périodiques

$$\frac{\mathrm{d}y}{\mathrm{d}t} = -\frac{y}{\tau} + b\sin\omega t$$

La solution générale peut ici se décomposer en une composante transitoire, en $\exp(-t/\tau)$, qui disparait au bout de quelques constantes de temps, plus une solution sinusoïdale permanente de réponse au forçage. On peut choisir cette dernière comme solution particulière.

2.2.3 EDO linéaires du 2e ordre à coefficients constants

EDO linéaire 2^e ordre à coefficients a, b, et c constants :

$$ay'' + by' + cy = d(t)$$

où d(t) est parfois appelé l'excitation ou forçage.

29 2020-2021	M3E	2020-2021	28
3 Résolution numérique des EDO 3.2 Deux types de problèmes différentiels à résoudre	EDO		3 Résolution numérique des EDO

3 Introduction à la résolution numérique des EDO

3.1 Problème différentiel

équation différentielle scalaire d'ordre n

$$\frac{\mathrm{d}^{n} y}{\mathrm{d} t^{n}} = f\left(t, \ y, \ \frac{\mathrm{d} y}{\mathrm{d} t}, \ \dots, \ \frac{\mathrm{d}^{n-1} y}{\mathrm{d} t^{n-1}}\right)$$

où f est la fonction second membre donnée

$$\Rightarrow$$
 famille de solutions $y(t)$ à *n* paramètres

- ensemble de *n* conditions imposées
 - \Rightarrow choix d' **une** solution dans la famille

Équation homogène d = 0: En recherchant des solutions (dites libres) sous la forme de combinaisons linéaires d'exponentielles e^{rt} , où r est une constante éventuellement complexe, on obtient l'équation caractéristique

$$ar^2 + br + c = 0$$

Elle permet de discuter la nature des solutions selon le signe de $\Delta=b^2-4ac.$

 $-\Delta > 0$ donc deux solutions réelles r_1 et r_2

 $y(t) = \lambda_1 e^{r_1 t} + \lambda_2 e^{r_2 t}$

— $\Delta = 0$ donc une solution double r_0

 $y(t) = e^{r_0 t} \left[\lambda_1 + \lambda_2 t\right]$

— $\Delta < 0$ donc deux solutions complexes conjuguées $r = \alpha \pm i\beta$

$$y(t) = e^{\alpha t} \left[\lambda_1 \cos(\beta t) + \lambda_2 \sin(\beta t) \right]$$

3.2 Deux types de problèmes différentiels à résoudre

— Conditions initiales données pour une seule valeur t_0 de t, par exemple

$$y(t_0) = y_0, \quad y'(t_0) = y'_0, \ \dots, \quad y^{(n-1)}(t_0) = y^{(n-1)}_0$$

Problème de **conditions initiales** ou de **Cauchy**

 Conditions données pour des valeurs distinctes de la variable indépendante t, par exemple :

$$y(t_0) = y_0, \quad y(t_1) = y_1, \dots, \quad y(t_{n-1}) = y_{n-1}$$

Problème de conditions aux limites (non traité, sauf problème de tir).

3.4 Unicité et problème bien posé : conditions suffisantes

La condition de Lipschitz

$$|f(t, y_2) - f(t, y_1)| \leqslant K |y_2 - y_1|$$
(3)

assure l'unicité de la solution.

$$\left| \frac{\partial f}{\partial y}(t,y) \right| \leqslant K$$
 dans un domaine convexe (4)

⇒ condition de Lipschitz vérifiée.

Les erreurs d'arrondi amènent à toujours résoudre un problème perturbé. Ŵ

Problème bien posé si : le problème faiblement perturbé (second membre ou condition initiale) possède une solution proche de celle du problème original. La condition de Lipschitz assure que le problème est bien posé.

Équations différentielles scalaires du 1^{er} ordre 3.3

Étudier d'abord les équations différentielles scalaires du premier ordre. \Rightarrow famille de solutions y(t) à un paramètre (y_0)

 $\frac{\mathrm{d}y}{\mathrm{d}t} = f(t, y(t))$ avec $y(t_0) = y_0$ condition initiale

Résolution numérique approchée sur l'intervalle $[t_0, t_0 + L]$ de longueur L \Rightarrow approximation $u_i = u(t_i) \approx y(t_i)$ en *n* instants $t_0 < t_i \leq t_n = t_0 + L$.

Les EDO d'ordre supérieur se ramènent à des systèmes différentiels couplés du premier ordre (EDO vectorielles du premier ordre).

EDO

M3E

Méthodes de résolution numérique et notations 3.5

Discrétisation par découpage de l'intervalle de longueur L selon un pas constant h

Échantillonnage de la solution aux instants $t_i = t_0 + ih$ pour $1 \le i \le n$. Solution numérique : u_i = approximation de $y(t_i)$

À partir de la condition initiale $u_0 = y(t_0)$ imposée,

faire une **boucle** sur les abscisses t_i pour calculer l'approximation u_{i+1} à t_{i+1}

- \rightarrow approximer ainsi de proche en proche la solution sur l'intervalle L.
- \Rightarrow accumulation des erreurs dans la boucle
- A chaque pas de la boucle, pour calculer u_{i+1} , on peut s'appuyer :
- sur la dernière valeur calculée u_i : méthodes à un pas
- sur **plusieurs valeurs** u_{i-k} ($k \ge 0$) antérieurement calculées : méthodes à plusieurs pas (initialisation nécessaire par méthode à un pas)

4 Méthodes à un pas

Constituent l'algorithme de base qui permet d'estimer la valeur de la solution à

. . . 0 ľa

- Précision finie des opérations sur les réels \Rightarrow erreur d'arrondi aléatoire augmente lorsque les calculs se compliquent, en particulier si le pas h diminue. Indépendamment du coût (en temps de calcul) des opérations. et des cas où la fonction est tabulé qualité du résultat

M3E	36	2020-2021	M3E	37	2020-2021
EDO	4 Méthodes à un pas	4.1 Méthodes du premier ordre	EDO	4 Méthodes à un pas	4.1 Méthodes du premier ordre

EDO

d a /ima 4.1.2 Méthode d'Eu

 $u_{i+1} = u_i + hf(t_{i+1}, u_{i+1})$ (7)

Méthode implicite : résolution itérative, plus difficile à mettre en œuvre, sauf si la forme de f(t, u) permet le calcul analytique de u_{i+1} à partir de l'équation (7). Avantage : meilleure stabilité que la méthode progressive explicite.

$$\begin{split} \frac{\mathrm{d}y}{\mathrm{d}t} &= -\frac{y}{\tau} \quad \Rightarrow \quad \text{solution analytique} \quad y = y_0 e^{-t/\tau} \Rightarrow y_n = y_0 (e^{-h/\tau})^n \\ u_{i+1} &= u_i - \frac{h}{\tau} u_{i+1} \quad \Rightarrow \quad \text{solution numérique} \quad u_{i+1} = \frac{u_i}{1+h/\tau} \\ u_n &= \frac{y_0}{(1+h/\tau)^n} \\ \mathrm{Si} \ \tau > 0, \ y(\infty) = 0, \ \text{et aussi} \ u_n \to 0 \quad \forall \tau > 0, \ \forall h > 0 \quad \text{solution stable} \end{split}$$

l'instant $t_{i+1} = t_i + h$, connaissant seulement u_i , celle à t_i .

La valeur à estimer peut être approchée par un développement limité de Taylor :

$$y(t_i + h) = y(t_i) + h \frac{\mathrm{d}y}{\mathrm{d}t}(t_i) + \frac{h^2}{2} \frac{\mathrm{d}^2 y}{\mathrm{d}t^2}(t_i) + \cdots$$
 (5)

rare
$$n$$
 de la methode = plus grande puissance de n prise en compte dans approximation.

- Somme des termes negliges = erreur de troncature locale
$$\propto h$$
 - déterministe, augmente si le pas h augmente et si l'ordre de la méthode diminue

Méthode d'Euler

Méthode explicite qui ne nécessite qu'une seule évaluation de la fonction second membre f par pas : $k_1 = f(t_i, u_i)$ facilement **instable** $\frac{u_{i+1} - u_i}{h} = f(t_i, u_i)$

voir dérivée avant

4.1 Méthodes du premier ordre

4.1.1 Méthode d'Euler progressive (explicite)

Méthode du premier ordre d'intérêt pédagogique, à éviter en pratique

$$u_{i+1} = u_i + hf(t_i, u_i)$$
(6)

Exemple : stabilité

$$\frac{dy}{dt} = -\frac{y}{\tau} \quad \Rightarrow \quad \text{solution analytique} \quad y = y_0 e^{-t/\tau} \Rightarrow y_n = y_0 (e^{-h/\tau})^n$$

$$u_{i+1} = u_i - \frac{h}{\tau} u_i \quad \Rightarrow \quad \text{solution numérique} \quad u_n = y_0 (1 - h/\tau)^n$$
Si $\tau > 0$, la solution exacte vérifie $y(\infty) = 0$,
Mais pour l'approximation, $u_n \to 0 \iff |1 - h/\tau| < 1 \iff 0 < h < 2\tau$.
Condition de **stabilité** : $h < 2\tau$ (pas h petit)
Mais, si $h > \tau$, alors $(1 - h/\tau) < 0$: alternance de signe de la solution u_n .

4 Méthodes à un pas

$$= \text{uier retrograde (implicite)}$$

Exemple : stabilité

$$\frac{dy}{dt} = -\frac{y}{\tau} \implies \text{ solution analytique } y = y_0 e^{-t/\tau} \Rightarrow y_n = y_0 (e^{-h/\tau})$$

$$u_{i+1} = u_i - \frac{h}{\tau} u_{i+1} \implies \text{ solution numérique } u_{i+1} = \frac{u_i}{1 + h/\tau}$$

$$u_n = \frac{y_0}{(1 + h/\tau)^n}$$

Itérer l'application g pour rechercher son **point fixe** où v = g(v)

 $v'_2 = g(v_2) = u_i + hf(t_2, v_2)$

Ce point fixe est la solution de l'équation implicite.

- Utilise plusieurs évaluations du second membre, sans calcul de ses dérivées.
- Très peu d'itérations nécessaires

Initialisation par le prédicteur avec Euler progressif

$$t_2 = t_i + h$$
$$k_1 = f(t_i, u_i)$$

$$v_2 = u_i + hk_1$$

40

4 Méthodes à un pas

M3E

EDO

4.2 Méthodes du deuxième ordre

Première idée : augmenter le nombre de termes du développement de Taylor : rarement utilisé, car nécessite l'évaluation des dérivées partielles de f.

$$\frac{\mathrm{d}y}{\mathrm{d}t} = f(t, \ y(t)) \qquad \Rightarrow \qquad \frac{\mathrm{d}^2 y}{\mathrm{d}t^2} = \frac{\partial f}{\partial t} + \frac{\partial f}{\partial y} \frac{\mathrm{d}y}{\mathrm{d}t} = \frac{\partial f}{\partial t} + f \frac{\partial f}{\partial y} \tag{10}$$

Préférer utiliser plusieurs évaluations du second membre f en des points adaptés. Centrer l'évaluation de la dérivée au point milieu $t_m = (t_i + t_{i+1})/2$.

$$y(t_i + h) = y(t_m) + \frac{h}{2} \frac{\mathrm{d}y}{\mathrm{d}t}(t_m) + \frac{1}{2} \frac{h^2}{4} \frac{\mathrm{d}^2 y}{\mathrm{d}t^2}(t_m) + O(h^3)$$
(11a)

$$y(t_i) = y(t_m) - \frac{h}{2} \frac{\mathrm{d}y}{\mathrm{d}t}(t_m) + \frac{1}{2} \frac{h^2}{4} \frac{\mathrm{d}^2 y}{\mathrm{d}t^2}(t_m) + O(h^3) \tag{11b}$$

Par différence, (approximation locale parabolique, voir aussi dérivée centrée à 2 termes)

$$y(t_i + h) - y(t_i) = h \frac{\mathrm{d}y}{\mathrm{d}t}(t_m) + O(h^3)$$

Boucle pour recherche du point fixe de $g(v_2) = v'_2 = u_i + hf(t_2, v_2)$

$$\begin{aligned} k_2 &= f(t_2, v_2) \\ v_2' &= u_i + hk_2 \\ \delta v_2 &= v_2' - v_2 \\ & \text{arrêt si} \quad |\delta v_2|^2 \leqslant \alpha^2 |v_2|^2 \quad (\alpha \text{ petit}) \\ v_2 &= v_2' \end{aligned}$$

La fonction g est contractante si $|g'(v_2)| = h \left| \frac{\partial f}{\partial v_2} \right| \leqslant 1$,

Si la majoration $\left|\frac{\partial f}{\partial v_2}\right| \leq K$ (souvent invoquée pour assurer la condition de Lipschitz) est vérifiée, q est contractante si le pas h est assez faible.

Critère d'arrêt : choisir α faible, mais $\alpha > \varepsilon$.

2020-2021	M3E	41	2020-2021
4.2 Méthodes du deuxième ordre	EDO	4 Méthodes à un pas	4.2 Méthodes du deuxième ordre

4.2.1 Méthode du point milieu

Nécessite l'évaluation du second membre f en 2 points : en (t_i,u_i) et au milieu $(t_{i+1/2}=t_i+h/2,\,u_{i+1/2})$ d'un pas (hors grille).

$$u_{i+1} = u_i + hf\left(t_i + \frac{h}{2}, \ u_i + \frac{h}{2}f(t_i, u_i)\right)$$

$$= f(t_i, \ u_i) \tag{12a}$$

$$(u_{i+1/2} \text{ calculé via Euler})$$
 $k_2 = f(t_i + \frac{h}{2}, \ u_i + k_1 \frac{h}{2})$ (12b)

 k_1

$$u_{i+1} = u_i + h k_2 \tag{12c}$$

4.2.2 Méthode d'Euler modifiée

En appliquant 11a et 11b à la dérivée et en faisant la somme, on peut remplacer la dérivée au milieu par la moyenne des dérivées aux extrémités de l'intervalle (voir méthode de quadrature dite des trapèzes) :

$$\frac{\mathrm{d}y}{\mathrm{d}t}(t_i) + \frac{\mathrm{d}y}{\mathrm{d}t}(t_{i+1}) = 2\frac{\mathrm{d}y}{\mathrm{d}t}(t_m) + O(h^2)$$

D'où une approximation n'utilisant pas la valeur de f au point milieu t_m :

$$u_{i+1} = u_i + \frac{h}{2} \left[f(t_i, u_i) + f(t_{i+1}, u_{i+1}) \right]$$

De nouveau, méthode a priori **implicite**, plus stable, mais plus lourde. \Rightarrow Contournement du problème en utilisant l'approximation d'Euler explicite (voir 6) pour évaluer u_{i+1} intervenant dans f.

$$u_{i+1} = u_i + \frac{h}{2} \left[f(t_i, u_i) + f(t_{i+1}, u_i + hf(t_i, u_i)) \right]$$

2020-2021	M3E	45	2020-2021
4.2 Méthodes du deuxième ordre	EDO	4 Méthodes à un pas	4.2 Méthodes du deuxième ordre
ssif. (13a) (13b) (13c)	y $u_{i+\overline{1}}$ u_i	$k_2h/2$ k_2 k_2 k_2 k_2 $k_1h/2$ k_1	Méthode d'Euler modifiée Méthode explicite qui nécessite deux éva- luations de la fonction par pas en des points de la grille.
rille ection jusqu'à $\frac{h}{2}\frac{\partial f}{\partial y}$).	+	t_i $t_i + h/2$ t_{i+1}	

Méthode du point milieu

Méthode explicite qui nécessite deux évaluations du second membre par pas dont une hors grille.

EDO

M3E

Bilan : méthode de type prédicteur-correcteur équivalent à

k

— un demi-pas avec la pente initiale k_1

— et un demi-pas avec la pente k_2 du point prédit par Euler progressif.

44

4 Méthodes à un pas

$$t_1 = f(t_i, \ u_i) \tag{13a}$$

$$k_2 = f(t_{i+1}, u_i + k_1 h)$$
 (13b)

$$u_{i+1} = u_i + \frac{h}{2} \left[k_1 + k_2 \right] \tag{13c}$$

Remarques

- deuxième ordre comme point milieu mais sans évaluation hors grille
- la résolution de l'équation implicite peut se faire en itérant la correction jusqu'à ce qu'elle devienne négligeable (voir Euler rétrograde avec $g' = \frac{h}{2} \frac{\partial f}{\partial y}$).

4.3 Méthodes de Runge Kutta

Plus généralement, avec r évaluations de f, on peut atteindre une méthode d'ordre r si $r \leq 4$. Pour atteindre l'ordre 5, six évaluations sont nécessaires. \implies la méthode de Runge Kutta d'ordre 4 est très utilisée.

4.3.1 Méthode de Runge Kutta d'ordre 3

$k_1 = f(t_i, u_i)$	(14a)
---------------------	-------

$$k_2 = f(t_i + \frac{h}{2}, \ u_i + k_1 \frac{h}{2})$$
 (14b)

$$k_3 = f(t_i + h, \ u_i + (2k_2 - k_1)h)$$
(14c)

$$u_{i+1} = u_i + (k_1 + 4k_2 + k_3)\frac{h}{6}$$
(14d)

4.3.2	Méthode	de Runge	Kutta	d'ordre 4
-------	---------	----------	-------	-----------

$$k_1 = f(t_i, \ u_i) \tag{15a}$$

$$k_2 = f(t_i + \frac{h}{2}, u_i + k_1 \frac{h}{2})$$
 (15b)

$$k_3 = f(t_i + \frac{h}{2}, u_i + \frac{k_2}{2})$$
 (15c)

$$k_4 = f(t_i + h, \ u_i + k_3 h) \tag{15d}$$

$$u_{i+1} = u_i + (k_1 + 2k_2 + 2k_3 + k_4)\frac{h}{6}$$
(15e)

2020-2021	49	M3E	2020-2021	48
4.5 Exemple de l'équation logistique	4 Méthodes à un pas	EDO	un pas 4.4 Erreur absolue en fonction du pas et de l'ordre	4 Méthodes à

4.5 Exemple de l'équation logistique

$$\frac{\mathrm{d}y}{\mathrm{d}t} = ay\left(1 - \frac{y}{k}\right) \tag{16}$$

Par séparation des variables, puis décomposition en éléments simples, elle s'écrit

$$a \,\mathrm{d}t = \frac{\mathrm{d}y}{y \left(1 - y/k\right)} = \frac{\mathrm{d}y}{y} + \frac{\mathrm{d}y}{k - y}$$

Par intégration des trois termes :

$$at + \text{constante} = \ln |y| - \ln |k - y|$$

On identifie la constante en supposant qu'à l'instant initial t_0 , $0 < y_0 = y(t_0) < k$. La solution analytique se met sous la forme :

$$y(t) = \frac{k}{1 + \frac{k - y_0}{y_0} \exp\left(-a(t - t_0)\right)}$$
(17)

M3E

EDO

4.4 Erreur absolue en fonction du pas et de l'ordre

nombre de pas
$$= L/h \implies$$
 erreur globale \sim erreur locale $imes L/h$

TABLE 1: Erreur de troncature seule

Méthode	ordre	erreur locale	erreur globale
Euler explicite	1	$\propto h^2$	$\propto h$
Point milieu – Euler modifiée	2	$\propto h^3$	$\propto h^2$
Runge-Kutta 3	3	$\propto h^4$	$\propto h^3$
Runge-Kutta 4	4	$\propto h^5$	$\propto h^4$

Erreur d'arrondi locale indépendante de $h \Rightarrow$ erreur d'arrondi globale $\propto 1/h$

M3E

51

FIGURE 4: Solution analytique et approximation par la méthode d'Euler avec un pas h = 0.4 de l'équation logistique pour $t_0 = 0, y(t_0) = 0.1, a = 1$ et k = 2.

FIGURE 6: Erreur dans l'intégration de l'équation logistique avec la méthode de Runge Kutta d'ordre 4 et h = 0, 4. Noter la diminution de l'erreur maximale d'un facteur 2000 environ par rapport à la méthode d'Euler pour un même pas.

4.5.1 Erreurs en fonction du temps

FIGURE 5: Erreur dans l'intégration de l'équation logistique avec la méthode d'Euler progressive avec h = 0, 4. L'allure régulière montre que l'erreur de troncature domine. L'erreur de troncature locale (0,163 max) est liée à la courbure de la solution.

2021	M3E	53	2020-2021
stique	EDO	4 Méthodes à un nas	4.5 Exemple de l'équation logistique
nque	200	4 Methodes a dir pas	4.5 Exemple de requalion logislique

FIGURE 7: Erreur avec la méthode d'Euler et h = 0, 2. Diviser le pas par 2 divise l'erreur maximale par 2.

FIGURE 8: Erreur avec la méthode RK4 et h = 0, 2. Diviser le pas par 2 divise l'erreur maximale par $2^4 = 16$.

M3E

fichier rk4.dat ordre 4 erreur max 0.954E-06 position de l'err max 0.190E+01

FIGURE 9: Erreur avec des **flottants sur 32 bits** avec la méthode de Runge Kutta d'ordre 4 pour h = 0, 02. L'allure **bruitée** est caractéristique de l'**erreur d'arrondi** et on retrouve les niveaux de quantification des réels sur 32 bits ($\varepsilon_{32} \approx 1, 2 \times 10^{-7}$). En python, par défaut les float sont sur 64 bits ($\varepsilon_{64} \approx 2, 2 \times 10^{-16}$), donc l'erreur d'arrondi est négligeable avec ce pas.

EDO

M3E

M3E

4 Méthodes à un pas 4.5 Exemp

4.5 Exemple de l'équation logistique

4.5 Exemple de l'équation logistique

4.5.2 Erreur totale maximale en simple précision (32 bits) en fonction du pas

RK4-logist-Err a=1 k=2 [0,20] h=0.002 y0=0.1 n=10001

temps

12.5 15.0 17.5 20.0

RK4-logistErr 3=1 k=2 [0, 20] h=0.001 y0=0.1 n=20001

FIGURE 10: Erreurs avec la méthode RK4 en flottants 64 bits pour 3 valeurs du pas h.

10.0 12.5 15.0 17.5 20.0 temps

$$\begin{split} h = 0,002: \text{ l'erreur de troncature domine} \\ \text{encore, mais on voit poindre l'arrondi.} \\ h = 0,001: \text{ l'erreur est dominée par l'arrondi et passe par un mininum pour ce pas.} \\ h = 0,0001: \text{ l'erreur d'arrondi a commencé} \\ \text{à croître quand le pas diminue.} \end{split}$$

M3E	57	2020-2021
EDO	4 Méthodes à un pas	4.5 Exemple de l'équation logistique

4.5.3 Erreur totale maximale en double précision (64 bits) en fonction du pas

Erreur absolue y'= y(1-y/2) sur [0,20] y(0)=0.1 double précision

M3E

0.0 2.5 5.0 7.5 10.0

0.0 2.5 5.0 7.5

4 Méthodes à un pas

4.5.4 Comparaison des erreurs maximales simple/double précision

5 Les EDO du premier ordre en pratique

5 Les EDO du premier ordre en pratique

5.1 Structure des programmes de résolution d'EDO

- 1 un module comportant les différentes méthodes (Euler, Point Milieu et RK4) : algorithmes de base s'appliquant à une fonction second membre *f* passée en argument permettant d'avancer d'un pas dans l'intégration de l'EDO
- 2 un module comportant les fonctions seconds membres de l'équation différentielle et les éventuelles solutions analytiques exactes ou approchées
- **3** une fonction d'**intégration** qui choisit la méthode, le second membre, les paramètres (début, fin, pas et conditions initiales par ex.). Elle déclenche et arrête la boucle d'intégration et stocke les résultats dans des tableaux.
- 4 un module d'**utilitaires** notamment pour écrire les résultats dans un fichier et tracer les solutions et les écarts avec l'analytique s'il existe.

4.5.5 Méthodes de prédicteur correcteur

Principe : bénéficier des qualités d'une méthode implicite mais l'appliquer à une estimation obtenue par une méthode explicite du même ordre (voir Euler modifiée).

- prédiction de u_{i+1} par une méthode explicite
- correction de u_{i+1} par une formule implicite où $f(t_{i+1}, y(t_{i+1}))$ a été approximé par la prédiction $f(t_{i+1}, u_{i+1})$.

Exemple : méthode d'Euler modifiée

Une itération de la partie correction est possible.

L'ordre est celui du correcteur, mais la stabilité dépend plus du prédicteur.

Ces méthodes permettent d'**estimer l'erreur de troncature** à partir de la différence entre prédicteur et correcteur \implies adaptation du pas

Plus généralement, **les méthodes adaptatives** sont celles où on ajuste **localement** le pas aux accidents de la solution pour obtenir une précision imposée.

21	M3E	61	2020-2021
	EDO	5 Les EDO du premier ordre en pratique	5.2 Échelles de temps et problèmes raides

5.2 Échelles de temps et problèmes raides

Ne pas oublier que chaque problème différentiel possède une ou plusieurs échelles de temps propres (périodes ou pseudo-périodes, constantes de temps).

La solution ne peut être représentée correctement qu'avec un pas assez inférieur au plus petit de ces temps propres.

Cette analyse impose donc une valeur maximale pour le pas.

Certains problèmes différentiels qualifiés de **raides** comportent des échelles de temps très différentes : leur intégration numérique s'avère délicate et coûteuse (pas faibles pour respecter le temps court, mais nombreux pour accéder au temps long). Il existe des méthodes spécifiques des EDO raides qui ne sont pas présentées ici.

5 Les EDO du premier ordre en pratique 5.4 Cas d'un second membre défini par intervalles

5.3 Validation des résultats

Validation via une solution analytique d'un problème simplifié

Lorsqu'une solution analytique est disponible (par exemple pour certaines valeurs de paramètres qui permettent de simplifier l'EDO), sa comparaison avec la solution numérique permet de tester la méthode. Le calcul de l'erreur dans le domaine où la troncature domine permet d'extrapoler l'effet d'un changement de pas connaissant l'ordre de la méthode.

Validation sans solution analytique

Dans le cas où aucune solution analytique de référence n'est disponible, la validation s'appuie sur les mêmes outils que les méthodes adaptatives :

- diminution du pas (division par 2)
- augmentation de l'ordre de la méthode
- calcul d'invariants (énergie par exemple)

МЗЕ	64	2020-2021	M3E
EDO	6 Systèmes d'EDO du 1 ^{er} ordre		EDO

6 Systèmes d'équations différentielles du 1^{er} ordre

6.1 Extension des méthodes scalaires explicites aux vecteurs

Système de n équations différentielles couplées du premier ordre associées à n conditions initiales

$$\frac{\mathrm{d}y_1}{\mathrm{d}t} = f_1(t, y_1, y_2, \dots, y_n)$$

$$\frac{\mathrm{d}y_2}{\mathrm{d}t} = f_2(t, y_1, y_2, \dots, y_n)$$

$$\dots = \dots$$

$$\frac{\mathrm{d}y_n}{\mathrm{d}t} = f_n(t, y_1, y_2, \dots, y_n)$$

considérer les vecteurs \vec{y} et \vec{f} .

5.4 Cas d'un second membre défini par intervalles

Dans le cas où le second membre est défini de façon différente suivant les intervalles de temps, il peut présenter des «accidents» aux bords de ces intervalles (non-dérivabilité, voire discontinuité). Un exemple classique est celui d'un second membre comportant un forçage constant par intervalle, tel un signal carré.

$$\frac{\mathrm{d}y}{\mathrm{d}t} = f_0(t, y) + h(t) \qquad \text{où} \quad h(t) = \begin{cases} +c & \text{si} \quad t \in [nT_0, nT_0 + T_0/2[\\ -c & \text{si} \quad t \in [nT_0 + T_0/2, nT_0 + T_0[\\ \end{array}] \end{cases}$$

La solution y(t) peut être non-dérivable (ou discontinue) en ces instants, tout en restant dérivable (ou continue) à gauche et à droite (voir charge/décharge de condensateur). Aussi bien analytiquement que numériquement, il faut donc **intégrer l'EDO indépendamment dans chaque intervalle**. La condition finale de l'intervalle de gauche devient la condition initiale de celui de droite.

Éviter absolument un pas d'intégration à cheval sur cette discontinuité.

0-2021	МЗЕ	65	2020-2021
	EDO	6 Systèmes d'EDO du 1 ^{er} ordre	6.1 Méthodes scalaires explicites

Les **méthodes explicites** de résolution des équations différentielles scalaires du premier ordre **s'appliquent aux systèmes**.

$$\frac{\mathrm{d}\vec{\mathbf{y}}}{\mathrm{d}t} = \vec{\mathbf{f}} \left(t, \ \vec{\mathbf{y}} \right)$$

À chaque étape, effectuer les calculs **sur chaque composante** avant de passer à l'étape suivante : **exemple avec la méthode du point milieu**

Étape 1 : vecteur des pentes au bord gauche $m{t_i}$ de l'intervalle $[t_i,t_i+h]$

$$\mathbf{k}_{1} = \mathbf{f}(t_{i}, \mathbf{u}_{i})$$

$$k_{1,1} = f_{1}(t_{i}, u_{i,1}, u_{i,2}, \dots, u_{i,n})$$

$$k_{1,2} = f_{2}(t_{i}, u_{i,1}, u_{i,2}, \dots, u_{i,n})$$

$$\dots = \dots$$

$$k_{1,n} = f_{n}(t_{i}, u_{i,1}, u_{i,2}, \dots, u_{i,n})$$

 $\vec{\mathbf{r}}$ $\vec{\mathbf{r}}$ $(\pm$ $\vec{\mathbf{r}}$)

Étape 2 : vecteur des pentes au point milieu prédit en $t_i + h/2$

$$\overrightarrow{\mathbf{k}_2} = \overrightarrow{\mathbf{f}} \left(t_i + h/2, \ \overrightarrow{\mathbf{u}_i} + \overrightarrow{\mathbf{k}_1} h/2 \right)$$

$$\begin{aligned} k_{2,1} &= f_1(t_i + h/2, u_{i,1} + k_{1,1}h/2, u_{i,2} + k_{1,2}h/2, \dots, u_{i,n} + k_{1,n}h/2) \\ k_{2,2} &= f_2(t_i + h/2, u_{i,1} + k_{1,1}h/2, u_{i,2} + k_{1,2}h/2, \dots, u_{i,n} + k_{1,n}h/2) \\ \dots &= \dots \\ k_{2,n} &= f_n(t_1 + h/2, u_{i,1} + k_{1,1}h/2, u_{i,2} + k_{1,2}h/2, \dots, u_{i,n} + k_{1,n}h/2) \end{aligned}$$

Étape 3 : vecteur résultat au bord droit $t_i + h$ de l'intervalle

$$\vec{\mathbf{u}}_{i+1} = \vec{\mathbf{u}_i} + h \vec{\mathbf{k}_2}$$
$$u_{i+1,j} = u_{i,j} + hk_{2,j} \qquad 1 \leqslant j \leqslant n$$

M3E	68	2020-2021	M3E

EDO

- la fonction second membre (func);
- le vecteur des conditions initiales (y0);
- le vecteur (t) des instants où la solution doit être évaluée, mais c'est l'intégrateur adaptatif qui choisit le pas de façon optimale.

6 Systèmes d'El

Le passage des **paramètres** des fonctions second membre se fait avec l'argument optionnel de mot clef **args** sous forme d'un t-uple comme pratiqué en TE.

scipy.integrate comporte aussi une interface plus orientée objet, la classe ode qui permet de choisir les méthodes d'intégration, parmi lesquelles :

- des méthodes explicites : par exemple dopri5 qui utilise des schémas de Runge Kutta d'ordres 5 et 4;
- des méthodes implicites : par exemple vode. Dans ce cas, il vaut mieux fournir la matrice jacobienne analytique (argument optionnel jac), au lieu de laisser l'intégrateur l'évaluer approximativement par différences finies.
- N.B : Les versions les plus récentes de scipy privilégient la nouvelle fonction **solve ivp** (solve initial value problem).

6.2 Application des méthodes implicites aux vecteurs

Les méthodes implicites nécessitent de résoudre à chaque pas un système d'équations a priori non linéaires.

Cette résolution numérique se fait de facon itérative, souvent par linéarisation locale

via la matrice jacobienne $\left(\left(\frac{\partial f_i}{\partial y_j}\right)\right)_{1 \leq i,j \leq n}$

6.3 Outils disponibles sous python

Les outils d'intégration sous python sont regroupés sous **scipy**.integrate et concernent les systèmes d'EDO avec la notation vectorielle.

La fonction **scipy**.**integrate**.**odeint** est une interface générale d'intégration qui choisit automatiquement la méthode suivant qu'il s'agit d'EDO raides ou non. On lui fournit les arguments obligatoires suivants :

3	2020-2021	M3E	69	2020-2021
DO du 1 ^{er} ordre	6.3 Outils disponibles sous python	EDO	6 Systèmes d'EDO du 1 ^{er} ordre	6.4 Implémentation vectorielle

6.4 Mise en œuvre vectorielle des méthodes à un pas

- Les méthodes d'intégration doivent fonctionner quelle que soit la taille p des vecteurs qui représentent la solution \vec{y} et le second membre \vec{f} de l'EDO.
- C'est le programme principal qui fixera cette taille.
 - Il devra donc choisir un second membre de la même dimension.
- Il fixe aussi la condition initiale $\mathbf{y}(\mathbf{t}_0)$ qui est un vecteur à p composantes.
- La solution approchée est représentée par un tableau 2D :
 - première dimension n: le nombre d'instants
 - la deuxième dimension p : le nombre de composantes de \vec{y} .
- Les tailles des tableaux des seconds membres effectifs seront héritées du

programme principal et non déclarées explicitement. Mais seules les p composantes effectives de \vec{f} (2 pour Lotka Volterra) seront calculées à partir des p composantes de \vec{y} .

6.5 Exemple de système non-linéaire couplé du premier ordre : équations de Lotka-Volterra

Deux populations en conflit : modèle proies (y_1) – prédateurs (y_2)

 $a_1 = 1/\tau_1$ = taux de croissance de y_1 (proies) en l'absence de y_2 (prédateurs)

 $a_2 = 1/\tau_2$ = taux de décroissance de y_2 (prédateurs) en l'absence de y_1 (proies)

Termes de couplage non-linéaires en y_1y_2 (rencontre des 2 espèces)

 $\frac{a_1}{k_2}y_2$ = taux de destruction des proies par les prédateurs $\frac{a_2}{k_1}y_1$ = taux de croissance des prédateurs au détriment des proies `` d

$$\frac{\mathrm{d}y_1}{\mathrm{d}t} = +a_1 y_1 \left(1 - \frac{y_2}{k_2} \right) \tag{18a}$$

$$\frac{\mathrm{d}y_2}{\mathrm{d}t} = -a_2 y_2 \left(1 - \frac{y_1}{k_1} \right) \tag{18b}$$

Solutions périodiques

EDO

6 Systèmes d'EDO du 1er ordre

6.5 Équations de Lotka-Volterra

2020-2021

Résolution numérique de Lotka-Volterra : $k_1 = k_2 = 1$, $a_1 = 1$, $a_2 = 0, 2$, h = 0, 1

Échelles linéaires

Lotka-Volterra : cycle dans le plan de phase

En éliminant le temps, on obtient un invariant, donc des solutions périodiques :

$$\frac{\mathrm{d}y_2}{\mathrm{d}y_1} = -\frac{a_2 y_2}{a_1 y_1} \frac{1 - y_1/k_1}{1 - y_2/k_2} \quad \Rightarrow \quad \boxed{y_1^{a_2} y_2^{a_1} \mathrm{e}^{-a_1 y_2/k_2 - a_2 y_1/k_1} = \mathrm{C^{te}}}$$

Tangentes horizontales pour $y_1 = k_1$ (ou $y_2 = 0$) : équilibre des prédateurs Tangentes verticales pour $y_2 = k_2$ (ou $y_1 = 0$) : équilibre des proies

EDO

6 Systèmes d'EDO du 1er ordre

6.5 Équations de Lotka-Volterra

Résolution numérique de Lotka-Volterra : $k_1 = k_2 = 1$, $a_1 = 1$ et $a_2 = 0, 2$. Échelle log en ordonnée

7 Équations différentielles d'ordre supérieur

 $\frac{\mathrm{d}^n y}{\mathrm{d}t^n} = f\left(t, \ y, \ \frac{\mathrm{d}y}{\mathrm{d}t}, \ \dots, \ \frac{\mathrm{d}^{n-1}y}{\mathrm{d}t^{n-1}}\right)$

Une EDO scalaire d'ordre n se ramène à un système de n équations différentielles

 $\begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_l \end{pmatrix} = \begin{pmatrix} y \\ y' \\ \dots \\ y^{(n-1)} \end{pmatrix} \implies \begin{pmatrix} y_1 \\ y'_2 \\ \dots \\ y'_l \end{pmatrix} = \begin{pmatrix} y_2 \\ y_3 \\ \dots \\ f(t, y_l, y_l) \end{pmatrix}$

M3E

EDO

7

du premier ordre couplées en posant :

7.2 Exemple d'EDO d'ordre 2 : le pendule

Pendule avec tige rigide de longueur l et masse ponctuelle m. Pendule non linéaire (u = position angulaire)

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} = -k^2 \mathrm{sin}(y) \quad \text{où} \quad k^2 = g/l \tag{20}$$

Pendule linéarisé (cas des petites amplitudes) : $sin(y) \approx y$

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} = -k^2 y$$

l'équation linéarisée admet une solution analytique en $A\cos(kt) + B\sin(kt)$.

Pour les amplitudes assez faibles, une approximation s'appuyant sur un développement au troisième ordre du sinus donne la période T en fonction de celle $T_0 = 2\pi/k$ du cas linéaire :

$$T = T_0 \left(1 + y_{\text{max}}^2/16\right)$$
 (formule de Borda) (22)

7.1 Exemple d'EDO linéaire d'ordre 2 avec forçage

Système linéaire du second ordre avec excitation h(t)

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} = a\frac{\mathrm{d}y}{\mathrm{d}t} + by + h(t) \tag{19}$$

Poser

EDO

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} y \\ y' \end{pmatrix} \quad \Rightarrow \quad \begin{pmatrix} y'_1 \\ y'_2 \end{pmatrix} = \begin{pmatrix} y_2 \\ ay_2 + by_1 + h(t) \end{pmatrix}$$

Condition initiale vectorielle : position $y(t_0)$ et vitesse $y'(t_0)$

Remarque Système différentiel d'ordre p de dimension n \Rightarrow système différentiel couplé du premier ordre à np dimensions.

76	2020-2021	M3E	77	2020-2021
Équations différentielles d'ordre supérieur	7.2 Exemple d'EDO d'ordre 2 : le pendule	EDO	7 Équations différentielles d'ordre supérieur	7.2 Exemple d'EDO d'ordre 2 : le pendule

Exprimer cette EDO du second ordre sous la forme d'un système différentiel couplé de dimension 2 mais du premier ordre.

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} y \\ y' \end{pmatrix} \implies \begin{pmatrix} y'_1 \\ y'_2 \end{pmatrix} = \begin{pmatrix} y_2 \\ -k^2 \sin(y_1) \end{pmatrix}$$

On peut alors résoudre numériquement le système non-linéaire, avec pour vecteur des conditions initiales :

$$\begin{pmatrix} y_1(0) \\ y_2(0) \end{pmatrix} = \begin{pmatrix} y(0) \\ \frac{\mathrm{d}y}{\mathrm{d}t}(0) = a \end{pmatrix} = \begin{pmatrix} \text{position angulaire} \\ \text{vitesse angulaire} \end{pmatrix}$$

78

2020-2021

 $-mq\sin(y)$

(21)

Énergie mécanique conservée, soit, après division par ml^2 :

$$\frac{1}{2}\left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2 + k^2(1-\cos y) = \text{constante}$$

Invariant qui permet de diagnostiguer la qualité de l'intégration numérique.

Cas où y(0) = 0 (départ en position d'équilibre stable)

$$\frac{1}{2}\left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2 + k^2(1-\cos y) = \frac{1}{2}\left(\frac{\mathrm{d}y}{\mathrm{d}t}(0)\right)^2$$

Vitesse angulaire minimale pour $y = \pi$ (position d'équilibre instable si atteinte). Si $a = \frac{\mathrm{d}y}{\mathrm{d}t}(0) > 2k$ (seuil) \Rightarrow la vitesse angulaire ne s'annule plus : on passe en régime apériodique, où le pendule tourne toujours dans le même sens.

Étude numérique de la transition périodique-apériodique attendue pour a = 2kavec les méthodes de Runge Kutta d'ordre 4 et d'Euler À k = 1 fixé, étude pour les valeurs de a: 0,2; 1; 1,98 et 2,02.

M3E	

80

2020-2021

EDO

M3E

7 Équations différentielles d'ordre supérieur

7.2 Exemple d'EDO d'ordre 2 : le pendule

Comparaisons non-linéaire (RK 4)–analytique linéarisé : plan de phase y'(y)

estimé

20

20

8 0

M3E

83

EDO

M3E

7 Équations différentielles d'ordre supérieur

7.2 Exemple d'EDO d'ordre 2 : le pendule

Comparaisons non-linéaire (Euler)–analytique linéarisé y(t)

Comparaisons non-linéaire (Euler)–analytique linéarisé : plan de phase $y^\prime(y)$

EDO

7 Équations différentielles d'ordra 3 Chábilité à long terme avec Euler progressive et rétrograde

Alternance des méthodes progressive et rétrograde entre position et vitesse

\Rightarrow **méthode symplectique** conservant mieux l'énergie

FIGURE 13: Euler mixte

- progressive sur position,
- rétrograde sur vitesse.

- FIGURE 14: Euler mixte
- rétrograde sur position,
- progressive sur vitesse.

7.3 Stabilité à long terme avec Euler progressive et rétrograde

Pendule linéarisé sans frottement représenté dans l'espace des phases : comportement à long terme d'un système non dissipatif

Même méthode sur les 2 composantes (position et vitesse) h=0.025

Références

- AKAI, TERRENCE J., *Applied Numerical Methods for Engineers*, 410 pages (Wiley, 1994), ISBN 0-471-57523-2.
- BURDEN, RICHARD L. et J. DOUGLAS FAIRES, *Numerical Analysis*, 875 pages (Brooks/Cole, 2011), neuvième édition, ISBN 0-538-73564-3.
- DEMAILLY, J.-P., *Analyse numérique et équations différentielles*, 350 pages (EDP Sciences, 2006), troisième édition, ISBN 978-2-86883-891-9.
- GUILPIN, CH., *Manuel de calcul numérique appliqué*, 577 pages (EDP Sciences, 1999), ISBN 2-86883-406-X.
- RAPPAZ, JACQUES et MARCO PICASSO, *Introduction à l'analyse numérique*, 268 pages (Presses polytechniques et universitaires romandes, 2010), ISBN 978-2-88074-851-7.