scipy.stats.relfreq¶
- scipy.stats.relfreq(a, numbins=10, defaultreallimits=None, weights=None)[source]¶
- Returns a relative frequency histogram, using the histogram function. - A relative frequency histogram is a mapping of the number of observations in each of the bins relative to the total of observations. - Parameters: - a : array_like - Input array. - numbins : int, optional - The number of bins to use for the histogram. Default is 10. - defaultreallimits : tuple (lower, upper), optional - The lower and upper values for the range of the histogram. If no value is given, a range slightly larger than the range of the values in a is used. Specifically (a.min() - s, a.max() + s), where s = (1/2)(a.max() - a.min()) / (numbins - 1). - weights : array_like, optional - The weights for each value in a. Default is None, which gives each value a weight of 1.0 - Returns: - frequency : ndarray - Binned values of relative frequency. - lowerlimit : float - Lower real limit - binsize : float - Width of each bin. - extrapoints : int - Extra points. - Examples - >>> import matplotlib.pyplot as plt >>> from scipy import stats >>> a = np.array([2, 4, 1, 2, 3, 2]) >>> res = stats.relfreq(a, numbins=4) >>> res.frequency array([ 0.16666667, 0.5 , 0.16666667, 0.16666667]) >>> np.sum(res.frequency) # relative frequencies should add up to 1 1.0 - Create a normal distribution with 1000 random values - >>> rng = np.random.RandomState(seed=12345) >>> samples = stats.norm.rvs(size=1000, random_state=rng) - Calculate relative frequencies - >>> res = stats.relfreq(samples, numbins=25) - Calculate space of values for x - >>> x = res.lowerlimit + np.linspace(0, res.binsize*res.frequency.size, ... res.frequency.size) - Plot relative frequency histogram - >>> fig = plt.figure(figsize=(5, 4)) >>> ax = fig.add_subplot(1, 1, 1) >>> ax.bar(x, res.frequency, width=res.binsize) >>> ax.set_title('Relative frequency histogram') >>> ax.set_xlim([x.min(), x.max()]) - >>> plt.show()   
