scipy.stats.multivariate_normal¶
- scipy.stats.multivariate_normal = <scipy.stats._multivariate.multivariate_normal_gen object at 0x2aba953e48d0>[source]¶
- A multivariate normal random variable. - The mean keyword specifies the mean. The cov keyword specifies the covariance matrix. - Parameters: - x : array_like - Quantiles, with the last axis of x denoting the components. - mean : array_like, optional - Mean of the distribution (default zero) - cov : array_like, optional - Covariance matrix of the distribution (default one) - allow_singular : bool, optional - Whether to allow a singular covariance matrix. (Default: False) - random_state : None or int or np.random.RandomState instance, optional - If int or RandomState, use it for drawing the random variates. If None (or np.random), the global np.random state is used. Default is None. - Alternatively, the object may be called (as a function) to fix the mean - and covariance parameters, returning a “frozen” multivariate normal - random variable: - rv = multivariate_normal(mean=None, cov=1, allow_singular=False) - Frozen object with the same methods but holding the given mean and covariance fixed.
 - Notes - Setting the parameter mean to None is equivalent to having mean
- be the zero-vector. The parameter cov can be a scalar, in which case the covariance matrix is the identity times that value, a vector of diagonal entries for the covariance matrix, or a two-dimensional array_like.
 - The covariance matrix cov must be a (symmetric) positive semi-definite matrix. The determinant and inverse of cov are computed as the pseudo-determinant and pseudo-inverse, respectively, so that cov does not need to have full rank. - The probability density function for multivariate_normal is \[f(x) = \frac{1}{\sqrt{(2 \pi)^k \det \Sigma}} \exp\left( -\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right),\]- where \(\mu\) is the mean, \(\Sigma\) the covariance matrix, and \(k\) is the dimension of the space where \(x\) takes values. - New in version 0.14.0. - Examples - >>> import matplotlib.pyplot as plt >>> from scipy.stats import multivariate_normal - >>> x = np.linspace(0, 5, 10, endpoint=False) >>> y = multivariate_normal.pdf(x, mean=2.5, cov=0.5); y array([ 0.00108914, 0.01033349, 0.05946514, 0.20755375, 0.43939129, 0.56418958, 0.43939129, 0.20755375, 0.05946514, 0.01033349]) >>> fig1 = plt.figure() >>> ax = fig1.add_subplot(111) >>> ax.plot(x, y) - The input quantiles can be any shape of array, as long as the last axis labels the components. This allows us for instance to display the frozen pdf for a non-isotropic random variable in 2D as follows: - >>> x, y = np.mgrid[-1:1:.01, -1:1:.01] >>> pos = np.dstack((x, y)) >>> rv = multivariate_normal([0.5, -0.2], [[2.0, 0.3], [0.3, 0.5]]) >>> fig2 = plt.figure() >>> ax2 = fig2.add_subplot(111) >>> ax2.contourf(x, y, rv.pdf(pos))     - Methods - pdf(x, mean=None, cov=1, allow_singular=False) - Probability density function. - logpdf(x, mean=None, cov=1, allow_singular=False) - Log of the probability density function. - rvs(mean=None, cov=1, size=1, random_state=None) - Draw random samples from a multivariate normal distribution. - entropy() - Compute the differential entropy of the multivariate normal. 
