Previous topic

scipy.signal.residue

Next topic

scipy.signal.invres

scipy.signal.residuez

scipy.signal.residuez(b, a, tol=0.001, rtype='avg')[source]

Compute partial-fraction expansion of b(z) / a(z).

If M is the degree of numerator b and N the degree of denominator a:

        b(z)     b[0] + b[1] z**(-1) + ... + b[M] z**(-M)
H(z) = ------ = ------------------------------------------
        a(z)     a[0] + a[1] z**(-1) + ... + a[N] z**(-N)

then the partial-fraction expansion H(z) is defined as:

        r[0]                   r[-1]
= --------------- + ... + ---------------- + k[0] + k[1]z**(-1) ...
  (1-p[0]z**(-1))         (1-p[-1]z**(-1))

If there are any repeated roots (closer than tol), then the partial fraction expansion has terms like:

     r[i]              r[i+1]                    r[i+n-1]
-------------- + ------------------ + ... + ------------------
(1-p[i]z**(-1))  (1-p[i]z**(-1))**2         (1-p[i]z**(-1))**n

This function is used for polynomials in negative powers of z, such as digital filters in DSP. For positive powers, use residue.

Parameters:

b : array_like

Numerator polynomial coefficients.

a : array_like

Denominator polynomial coefficients.

Returns:

r : ndarray

Residues.

p : ndarray

Poles.

k : ndarray

Coefficients of the direct polynomial term.