from scipy.stats import randint import matplotlib.pyplot as plt fig, ax = plt.subplots(1, 1) # Calculate a few first moments: low, high = 7, 31 mean, var, skew, kurt = randint.stats(low, high, moments='mvsk') # Display the probability mass function (``pmf``): x = np.arange(randint.ppf(0.01, low, high), randint.ppf(0.99, low, high)) ax.plot(x, randint.pmf(x, low, high), 'bo', ms=8, label='randint pmf') ax.vlines(x, 0, randint.pmf(x, low, high), colors='b', lw=5, alpha=0.5) # Alternatively, the distribution object can be called (as a function) # to fix the shape and location. This returns a "frozen" RV object holding # the given parameters fixed. # Freeze the distribution and display the frozen ``pmf``: rv = randint(low, high) ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1, label='frozen pmf') ax.legend(loc='best', frameon=False) plt.show() # Check accuracy of ``cdf`` and ``ppf``: prob = randint.cdf(x, low, high) np.allclose(x, randint.ppf(prob, low, high)) # True # Generate random numbers: r = randint.rvs(low, high, size=1000)