from scipy.stats import planck import matplotlib.pyplot as plt fig, ax = plt.subplots(1, 1) # Calculate a few first moments: lambda_ = 0.51 mean, var, skew, kurt = planck.stats(lambda_, moments='mvsk') # Display the probability mass function (``pmf``): x = np.arange(planck.ppf(0.01, lambda_), planck.ppf(0.99, lambda_)) ax.plot(x, planck.pmf(x, lambda_), 'bo', ms=8, label='planck pmf') ax.vlines(x, 0, planck.pmf(x, lambda_), colors='b', lw=5, alpha=0.5) # Alternatively, the distribution object can be called (as a function) # to fix the shape and location. This returns a "frozen" RV object holding # the given parameters fixed. # Freeze the distribution and display the frozen ``pmf``: rv = planck(lambda_) ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1, label='frozen pmf') ax.legend(loc='best', frameon=False) plt.show() # Check accuracy of ``cdf`` and ``ppf``: prob = planck.cdf(x, lambda_) np.allclose(x, planck.ppf(prob, lambda_)) # True # Generate random numbers: r = planck.rvs(lambda_, size=1000)