from scipy.stats import nbinom import matplotlib.pyplot as plt fig, ax = plt.subplots(1, 1) # Calculate a few first moments: n, p = 0.4, 0.4 mean, var, skew, kurt = nbinom.stats(n, p, moments='mvsk') # Display the probability mass function (``pmf``): x = np.arange(nbinom.ppf(0.01, n, p), nbinom.ppf(0.99, n, p)) ax.plot(x, nbinom.pmf(x, n, p), 'bo', ms=8, label='nbinom pmf') ax.vlines(x, 0, nbinom.pmf(x, n, p), colors='b', lw=5, alpha=0.5) # Alternatively, the distribution object can be called (as a function) # to fix the shape and location. This returns a "frozen" RV object holding # the given parameters fixed. # Freeze the distribution and display the frozen ``pmf``: rv = nbinom(n, p) ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1, label='frozen pmf') ax.legend(loc='best', frameon=False) plt.show() # Check accuracy of ``cdf`` and ``ppf``: prob = nbinom.cdf(x, n, p) np.allclose(x, nbinom.ppf(prob, n, p)) # True # Generate random numbers: r = nbinom.rvs(n, p, size=1000)