from scipy.stats import boltzmann import matplotlib.pyplot as plt fig, ax = plt.subplots(1, 1) # Calculate a few first moments: lambda_, N = 1.4, 19 mean, var, skew, kurt = boltzmann.stats(lambda_, N, moments='mvsk') # Display the probability mass function (``pmf``): x = np.arange(boltzmann.ppf(0.01, lambda_, N), boltzmann.ppf(0.99, lambda_, N)) ax.plot(x, boltzmann.pmf(x, lambda_, N), 'bo', ms=8, label='boltzmann pmf') ax.vlines(x, 0, boltzmann.pmf(x, lambda_, N), colors='b', lw=5, alpha=0.5) # Alternatively, the distribution object can be called (as a function) # to fix the shape and location. This returns a "frozen" RV object holding # the given parameters fixed. # Freeze the distribution and display the frozen ``pmf``: rv = boltzmann(lambda_, N) ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1, label='frozen pmf') ax.legend(loc='best', frameon=False) plt.show() # Check accuracy of ``cdf`` and ``ppf``: prob = boltzmann.cdf(x, lambda_, N) np.allclose(x, boltzmann.ppf(prob, lambda_, N)) # True # Generate random numbers: r = boltzmann.rvs(lambda_, N, size=1000)