from scipy.stats import bernoulli import matplotlib.pyplot as plt fig, ax = plt.subplots(1, 1) # Calculate a few first moments: p = 0.3 mean, var, skew, kurt = bernoulli.stats(p, moments='mvsk') # Display the probability mass function (``pmf``): x = np.arange(bernoulli.ppf(0.01, p), bernoulli.ppf(0.99, p)) ax.plot(x, bernoulli.pmf(x, p), 'bo', ms=8, label='bernoulli pmf') ax.vlines(x, 0, bernoulli.pmf(x, p), colors='b', lw=5, alpha=0.5) # Alternatively, the distribution object can be called (as a function) # to fix the shape and location. This returns a "frozen" RV object holding # the given parameters fixed. # Freeze the distribution and display the frozen ``pmf``: rv = bernoulli(p) ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1, label='frozen pmf') ax.legend(loc='best', frameon=False) plt.show() # Check accuracy of ``cdf`` and ``ppf``: prob = bernoulli.cdf(x, p) np.allclose(x, bernoulli.ppf(prob, p)) # True # Generate random numbers: r = bernoulli.rvs(p, size=1000)